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Abstract The paper introduces the dynamics of a stochastic multi-molecule bio-
chemical reaction model.First, we show that there is a unique positive solution of
the stochastic model. Furthermore, we deduce the conditions when the reaction will
end and when the reaction being proceed. At last, we derive that the solution of (1.5)
oscillates around the endemic proportion equilibrium P∗(x∗, y∗), and the intensity
of fluctuation is proportional to white noise. The key to the analysis in this paper is
choosing appropriate Lyapunov function. The outcomes are illustrated by computer
simulations throughout this paper.
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1 Introduction

In this paper,we will introduce a stochastic multi-molecule biochemical reaction
model. In [1], E.E.Sel’kov describes a kinetic model of an open monosubstrate enzyme
reaction with substrate inhibition and product activation. The reaction process is sim-
plified as

[A0]k1−→A1, A1 k2−→Q

p A1 + q A2 k3−→(p + q)A2, A2 k4−→P

Note the concentrations at time t of A1 and A2 are x(t) and y(t) separately. Then
according to the law of mass action and the law of mass conservation, modelling the
mathematical model of multi-molecule biochemical reaction is:

⎧
⎪⎨

⎪⎩

dx

dt
= k1x0 − k2x − pk3x p yq

dy

dt
= pk3x p yq − k4 y

(1.1)

thereinto x0 is the concentration of A0, being set as constant. Through the dimension-
less transformation, system (1.1) change into:

⎧
⎪⎨

⎪⎩

dx1

dt
= δ − ax1 − x1

px2
q

dx2

dt
= x1

px2
q − bx2

(1.2)

where x1 ≥ 0, x2 ≥ 0, a ≥ 0, b > 0, δ ≥ 0, p and q are positive integers. Some
people research the dynamics of the system (1.2) under the assumption a = 0. In [2],
author show that as p = n, q = 2 system (1.2) can produce stable limit cycles from
Hopf bifurcations. The case of p = 1 is discussed perfectly in [3], and the existence
of closed orbits is discussed in [4] when p = 2. But the whole research of this model
has not yet been see, especially the situation of a �= 0, while the model will appear
more positive equilibrium points and multiple limit cycles.

Obviously, system (1.1) is similar to the famous epidemic model(SIS) with nonlin-
ear incidence rate. If p = q = 1, then system (1.1) is similar to the SIS model which
has bilinear incidence rate. If 0 < q < 1 holds, using the same statement as in [5], we
draw a conclusion, i.e. the system has two equilibrium states: an equilibrium Q0 with
the coordinates x̄0 = k1x0

k2
, ȳ0 = 0 and an endemic equilibrium state Q∗ = (x∗, y∗),

such that

k1x0 = k2x∗ + pk3x∗p y∗q , pk3x∗p y∗q = k4 y∗.

In [5], the authors affirm that if q ≤ 1, then the endemic equilibrium state Q∗ of the
system are globally asymptotically stable. Furthermore, the stability does not depend
on the value of the parameter p.
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Due to the model of oscillating chemical reactions requires p and q are positive
integers, so in this paper, we consider the system (1.1) for q = 1 and p ≥ 1, when
system (1.1) become the following form:

⎧
⎪⎨

⎪⎩

dx

dt
= k1x0 − k2x − pk3x p y

dy

dt
= pk3x p y − k4 y

(1.3)

Obviously, system (1.3) always has the boundary equilibrium P̄ = (x̄, ȳ) = ( k1x0
k2

, 0).

The threshold of system (1.3) is R0 = pk3
k4

(
k1x0
k2

)p
. If R0 ≤ 1, then P̄ is the unique

equilibrium of (1.3) and it is globally stable in invariant set �, where � = {(x, y) :
x > 0, y ≥ 0, x + y ≤ k1x0)

k }, here k = min{k2, k4}. If R0 > 1, then P̄ is unstable

and there are endemic equilibrium P∗ = (x∗, y∗) =
(

p
√

k4
pk3

, 1
k4

(k1x0 − k2
p
√

k4
pk3

)
)

of

(1.3), which is globally asymptotically stable under a sufficient condition in invariant
set �.

In the process to establish the mathematical model of chemical reactions, for mod-
elling, we usually assuming that the reaction rate is a constant under the premise that
the reaction is carried out in the determined temperature and pressure. But in fact, the
chemical reaction rate is closely related with the temperature and pressure when the
reaction is proceeding. In addition, the chemical reaction rate is also affected by such
as the catalyst, condition of concentration, solvent and other factors. It is apparently
that chemical reaction models are inevitably affected by environmental white noise
which is an important component in realism, because it can provide an additional
degree of realism in compared to their deterministic counterparts.

Both from a chemical and from a mathematical perspective,there are different pos-
sible approaches to include random effects in the model. Now, let us consider the sec-
ond equation of (1.3). To establish the stochastic differential equation(SDE) model,
we naturally re-write the equation in the form of differential

dy(t) =
[

pk3x P (t)y(t) − k4 y(t)
]

dt (1.4)

Here [t, t + �t) is a small time interval and we use the notation d· for the small
change, for example dy(t) = y(t + dt) − y(t) and the change dy(t) is described by
(1.4). Consider the reaction rate constant pk3 in the deterministic model. This can be
thought of the rate of reactant A1 generation A2, where A1 collided with A2 will cause
the reaction proceeds. In the reaction process of

p A1 + q A2 k3−→(p + q)A2

the total number of newly increased concentration of molecule A2 in the small time
interval [t, t + dt) is

pk3x p yqdt
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and a unit concentration reactant A1 makes

pk3dt

A2 collided with each other molecule in the small interval [t, t + dt).
Now suppose that some stochastic environment factors acts simultaneously on

each molecule in the reaction. In this case, pk3 changes to a random variable k̃. More
precisely, each A1 generates

k̃dt = pk3dt + σd B(t)

A2 in [t, t+dt).Here d B(t) = B(t+dt)−B(t) is the increment of a standard Brownian
motion. Thus the concentration of newly increasing A2 that a single A1 collided with
A2 in [t; t + dt) is normally distributed with mean pk3dt and variance σ 2dt . Hence
E(k̃dt) = pk3dt and var(k̃dt) = σ 2dt . As var(k̃dt) → 0 as dt → 0 this is a
biologically reasonable model. Indeed this is a well-established way of introducing
stochastic environmental noise into realistic chemical reaction dynamic models. See
[6–12] and many other references.

Therefore we replace pk3dt in Eq. (1.3) by k̃dt = pk3dt + σd B(t) to get

dy(t) = [pk3x p(t)y(t) − k4 y(t)]dt + σ x p(t)y(t)d B(t)

Note that k̃dt now denotes the mean of the stochastic concentration of A1 generate
A2 in the infinitesimally small time interval [t, t + dt). Similarly, the first equation of
(1.3) becomes another SDE. That is, the deterministic multi-molecule reaction model
(1.3) becomes the I t ô SDE

{
dx = (k1x0 − k2x − pk3x p y)dt − σ x p yd B(t)
dy = (pk3x p y − k4 y)dt + σ x p yd B(t)

(1.5)

We will try to discuss the dynamics behavior of the system (1.5), which can easily
determine the extinction and persistence of the reaction. This paper is organized as
follows. In Sect. 2, we show there is a unique positive solution of system (1.5) by the
same way as mentioned in Refs. [13–15]. In Sect. 3, we deduce the condition which
will bring the reaction end. The condition for the reaction being persistent is given in
Sect. 4. In Sect. 5, when R0 > 1, we derive that the solution of (1.5) oscillates around
the endemic proportion equilibrium P∗(x∗, y∗), and the intensity of fluctuation is
proportional to white noise. The key to the analysis in this paper is choosing appropriate
Lyapunov function. Throughout the paper, outcomes of numerical simulations are
reported in support of analytical results.

Throughout this paper, unless otherwise specified, let (�,F , {Ft }t≥0, P) be a com-
plete probability space with a filtration {Ft }t≥0 satisfying the usual conditions (i.e.it
is right continuous and F0 contains all P-null sets). Denote

Rn+ ={x ∈ Rn : xi >0 f or all 1≤ i ≤ n}, R̄n+ ={x ∈ Rn : xi ≥0 f or all 1≤ i ≤n}
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In general, consider d-dimensional stochastic differential equation

dx(t) = f (x(t), t)dt + g(x(t), t)d B(t), f or t ≥ t0 (1.6)

with initial value x(t0) = x0 ∈ Rn , B(t) denotes d-dimensional standard Brownian
motions defined on the above probability space. Define the differential operator L
associated with Eq. (1.6) by

L = ∂

∂t
+

∑
fi (x, t)

∂

∂xi
+ 1

2

∑[
gT (x, t)g(x, t))

]

i j

∂2

∂xi x j

If L acts on a function V ∈ C2,1(Rn × R+; R+), then

LV (x, t) = Vt (x, t) + Vx (x, t) f (x, t) + 1

2
trace[gT (x, t)Vxx (x, t)g(x, t)]

where Vt = ∂V
∂t , Vx = ( ∂V

∂x1
, . . . , ∂V

∂xd
) and Vxx = ( ∂2V

∂xi x j
)d×d . By Itô’s formula,if

x(t) ∈ Sh , then

dV (x(t), t) = LV (x(t), t)dt + Vx (x(t), t)g(x(t), t)d B(t).

Consider Eq. (1.6), assume f (0, t) = 0 and g(0, t) = 0 for all t ≥ t0. So x(t) ≡ 0
is a solution of Eq. (1.6), called the trivial solution or equilibrium position.

2 Existence and uniqueness of the positive solution

In this section we first show that the solution of system (1.5) is positive and global. To
get a unique global (i.e.no explosion in a finite time) solution for any initial value, the
coefficients of the equation are required to satisfy the local lipschitz condition and the
linear growth condition (cf. Mao [16]). However, the coefficients of system (1.5) do
not satisfy the linear growth condition, as the item x p y is nonlinear. So the solution of
system (1.5) may explore in finite time. In this section, we use the Lyapunov analysis
method, as mentioned in Refs. [13–15], to show that the solution of system (1.5) is
positive and global.

Theorem 2.1 There is a unique solution (x(t), y(t)) of system (1.5) on t ≥ 0 for any
initial value (x(0), y(0)) ∈ R2+, and the solution will remain in R2+ with probability
1, namely, (x(t), y(t)) ∈ R2+ for all t ≥ 0 almost surely.

Proof Since the coefficients of equation are locally Lipschitz continuous for any given
initial value (x(0), y(0)) ∈ R2+, there is a unique local solution (x(t), y(t)) on t ∈
[0, τe), where τe is the explosion time (see Ref. [16]). To show this solution is global,
we need to proof that τe = ∞a.s. Let m0 ≥ 0 be sufficiently large so that x(0) and
y(0) all lie within the interval [1/m0, m0]. For each m ≥ m0, define the stopping time

τm = in f {t ∈ [0, τe) : min{x(t), y(t)} ≤ 1

m
or max{x(t), y(t)} ≥ m}
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where throughout this paper, we set in f φ = ∞ (as usual φ denotes the empty set).
According to the definition, τm is increasing as m → ∞. Set τ∞ = limm→∞ τm , where
τ∞ ≤ τe a.s. If we can prove that τ∞ = ∞ a.s., then τe = ∞ and (x(t), y(t)) ∈ R2+
a.s. for all t ≥ 0. In other words, to complete the proof all we need to show is that
τ∞ = ∞ a.s. If not, there exists a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T } > ε.

Hence there is an integer m1 ≥ m0 such that

P{τm ≤ T } ≥ ε, f or all m ≥ m1. (2.1)

For t ≤ τm , we can see, for each m,

d(x + y) = (k1x0 − k2x − k4 y)dt ≤ [k1x0 − k(x + y)]dt

where k = min{k2, k4}. Therefore,

x(t) + y(t) ≤
{ k1x0

k , i f x(0) + y(0) ≤ k1x0
k

x(0) + y(0), i f x(0) + y(0) > k1x0
k := M

Define a C2-function V : R2+ → R+ by

V (x, y) = x − 1 − logx + (y − 1 − logy).

The non-negativity of this function can be seen from u − 1 − logu ≥ 0,∀u > 0. Let
m ≥ m0 and T > 0 be arbitrary. Using Itô’s formula, we obtain

dV (x, y) =
(

1 − 1

x

)

dx + 1

2x2 (dx)2 +
(

1 − 1

y

)

dy + 1

2y2 (dy)2

= LV dt + σ(y − x)x p−1d B(t). (2.2)

where LV : R2+ → R̄+ is defined by

LV =
(

1− 1

x

)

(k1x0−k2x− pk3x p y)+ σ 2

2
x2(p−1)y2+

(

1− 1

y

)

(pk3x p y−k4 y)

+σ 2

2
x2p

= k1x0+k2+k4−k2x− k1x0

k
−k4 y+ pk3x p−1(x+y)+ σ 2

2
x2(p−1)(y2+x2)

≤ k1x0 + k2 + k4 + pk3 M p + σ 2 M2p := C

The remainder of the proof follows that in Ji et al. [17]. �
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Remark 2.1 From Theorem 2.1 for any initial value (x(0), y(0)) ∈ R2+ , there is a
unique global solution (x(t), y(t)) ∈ R2+ almost surely of system (1.5). Hence

d(x + y) ≤ [k1x0 − k(x + y)]dt,

and

x(t) + y(t) ≤ k1x0

k
+ e−kt

[

x(0) + y(0) − k1x0

k

]

If x(0) + y(0) ≤ k1x0
k , then x(t) + y(t) ≤ k1x0

k a.s. So the region

�∗ =
{

(x, y) ∈ R2+, x + y ≤ k1x0

k

}

(2.3)

is a positively invariant set of system (1.5), which is similar to � of system (1.3).
From now on, we always assume that (x(0), y(0)) ∈ �∗. For convenience we

introduce the notation; let

〈x(t)〉 = 1

t

t∫

0

x(r)dr.

3 Conditions of the end of the reaction

In this section, we investigate the conditions for the extinction of the reaction.

Theorem 3.1 Let (x(t), y(t)) be the solution of system (1.5) with initial value
(x(0), y(0)) ∈ �∗. If

(a) σ 2 >
pk3
2x̄ p , or

(b) R0 − 1 < σ 2 x̄2p

2k4
and σ 2 ≤ pk3

2x̄ p ,

Then

lim sup
t→∞

log y(t)

t
≤ −k4 + p2k3

2

2σ 2 < 0 a.s. If (a) holds; (3.1)

lim sup
t→∞

log y(t)

t
≤ k4(R0 − 1 − σ 2 x̄2p

2k4
) < 0 a.s. If (b) holds; (3.2)

(namely, y(t) tends to zero exponentially a.s. i.e., the reaction will end with probability
1). In addition,

lim
t→∞ x(t) = k1x0

k2
= x̄ . (3.3)
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Proof An integration of system (1.5) yields

⎧
⎪⎪⎨

⎪⎪⎩

x(t)−x(0)
t = k1x0 − k2〈x(t)〉 − pk3〈x p(t)y(t)〉 − σ

t

t∫

0
x p(r)y(r)d B(r)

y(t)−y(0)
t = pk3〈x p(t)y(t)〉 − k4〈y(t)〉 + σ

t

t∫

0
x p(r)y(r)d B(r).

(3.4)

According to (3.4), we have

x(t) − x(0)

t
+ y(t) − y(0)

t
= k1x0 − k2〈x(t)〉 − k4〈y(t)〉, (3.5)

we compute that

〈x(t)〉 = k1x0

k2
− k4

k2
〈y(t)〉 + ϕ(t), (3.6)

where ϕ(t) is defined by

ϕ(t) = − 1

k2

[
x(t) − x(0)

t
+ y(t) − y(0)

t

]

.

Note (2.3), so

lim
t→∞ ϕ(t) = 0. (3.7)

Applying Itô formula to system (1.5) leads to

d(log y) =
(

pk3x p − k4 − σ 2

2
x2p

)

dt + σ x pd B(t)

Integrating from 0 to t and dividing t on both sides, we have

log y(t) − log y(0)

t
= pk3〈x p(t)〉 − k4 − σ 2

2
〈x2p(t)〉 + σ

t

t∫

0

x p(r)d B(r)

≤ pk3〈x p(t)〉 − k4 − σ 2

2
〈x p(t)〉2 + σ

t

t∫

0

x p(r)d B(r)

:= f (z) + M1(t)

t
. (3.8)

where f : (0, ( k1x0
k2

)p) → R is defined by

f (z) = pk3z − k4 − σ 2

2
z2 = −σ 2

2

(

z − pk3

σ 2

)2
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+ p2k3
2

2σ 2 − k4, z = 〈x p(t)〉 ∈
[

0,

(
k1x0

k2

)p]

. (3.9)

and

M1(t) := σ

t∫

0

x p(r)d B(r). (3.10)

which is a local continuous martingale and M1(0) = 0. Moreover,

lim sup
t→∞

〈M1, M1〉t

t
≤ σ 2

(
k1x0

k

)p

< ∞ a.s.

By the large number theorem for martingales (see e.g. [16]), we obtain

lim
t→∞

M1(t)

t
= 0 a.s. (3.11)

If σ 2 >
pk3
2x̄ p , (i.e. pk3

2σ 2 < ( k1x0
k2

)p), by (3.9), it is easy to see that

f (z) ≤ f

(
pk3

σ 2

)

= p2k3
2

2σ 2 − k4,

then from (3.8), we have

log y(t)

t
≤ log y(0)

t
+ f (z) + M1(t)

t
≤ log y(0)

t
+ p2k3

2

2σ 2 − k4 + M1(t)

t

Taking the limit superior of both sides, we obtain the desired assertion (3.1)

lim sup
t→∞

log y(t)

t
≤ p2k3

2

2σ 2 − k4 < 0 a.s.

If σ 2 ≤ pk3
2x̄ p , (i.e. pk3

2σ 2 ≥ ( k1x0
k2

)p), then

f (z) ≤ −σ 2

2

((
k1x0

k2

)p

− pk3

σ 2

)2

+ p2k3
2

2σ 2 − k4,

from (3.8), we have assertion (3.2)

lim sup
t→∞

log y(t)

t
≤ k4

(

R0 − 1 − σ 2 x̄2p

2k4

)

< 0 a.s.

which implies lim
t→∞ y(t) = 0 a.s.
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Next, we prove the assertion (3.3). According to system (1.5), we obtain

d(x + y)=(k1x0−k2x−k4 y)dt =[k1x0 − k2(x + y) + (k2 − k4)y]dt (3.12)

From (3.12) we can formally solve to obtain

x(t) + y(t) = e−k2t {x(0) + y(0) +
t∫

0

[k1x0 − (k4 − k2)y(s)]ek2sds}

Applying L’Hospital’s rule and (3.11), we get

lim
t→∞ x(t) = lim

t→∞

{
x(0) + y(0) + ∫ t

0 [k1x0 − (k4 − k2)y(s)]ek2sds

ek2t
− y(t)

}

= lim
t→∞

k1x0 − (k4 − k2)y(t)

k2
= k1x0

k2
= x̄ .

This finish the proof. �


Remark 3.1 Theorem 3.1 tells us the reaction will end if R0 − 1 < σ 2 x̄2p

2k4
, and the

white noise is not large. While if the white noise is large enough such that σ 2 >
pk3
2x̄ p

is satisfied, then the reaction will also end. The following example illustrate this result
more explicitly.

Example 3.1 Throughout the paper we shall assume that the unit of time is minute
and the concentrations of the reactant are measured in units of mol/L ·min. Choosing
the parameters in the system (1.5) as follows:

k1 = 1.4, x0 = 1, k2 = 1.2, k3 = 0.5, k4 = 1.2, σ = 0.6, (3.13)

Here we choose p = 2, that is one of the conditions of p ≥ 1. Note that

R0 − σ 2 x̄2p

2k4

.= 0.856 < 1

and

σ 2 = 0.36 <
pk3

2x̄ p
.= 0.367

then by Theorem 3.1, the solution (x(t), y(t)) of system (1.5) obeys

lim sup
t→∞

log y(t)

t
≤ k4

(

R0 − 1 − σ 2 x̄2p

2k4

)

= −0.1728 < 0, a.s.
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Fig. 1 Computer simulation of the path x(t), y(t) for the SDE multi-molecule reaction model (1.5) and
its corresponding deterministic model (1.3) for parameter values k1 = 1.4, x0 = 1, k2 = 1.2, k3 =
0.5, k4 = 1.2, σ = 0.6 and p = 2. Using the EM method with step size �t = 0.001 and initial value
(x(0), y(0)) = (0.8, 2)

and

lim
t→∞ x(t) = k1x0

k2
= x̄

.= 1.167,

with any initial value (x(0), y(0)) = (0.8, 2) ∈ �∗. That is y(t) will tends to zero
exponentially with probability one. Otherwise, for the corresponding deterministic
model (1.3)

R0 = pk3

k4

(
k1x0

k2

)p
.= 1.134 > 1;

then the endemic equilibrium (x∗, y∗) is globally asymptotically stable in �. Using
the method mentioned in [18], we give the simulations shown in Fig. 1 to support our
results.

Example 3.2 We keep all the parameters of (3.13) unchanged but increase σ to 0.9.
Note that σ 2 >

pk3
2x̄ p

.= 0.367; then by Theorem 3.1, the solution (x(t), y(t)) of system
(1.5) obeys

lim sup
t→∞

log y(t)

t
≤ −k4 + p2k3

2

2σ 2
.= 0.5827 < 0a.s.

That is y(t) will tend to zero exponentially with probability one. But for the corre-
sponding deterministic model (1.3), R0 > 1; then the endemic equilibrium (x∗, y∗)
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Fig. 2 Computer simulation of the path x(t), y(t) for the SDE multi-molecule reaction model (1.5) and
its corresponding deterministic model (1.3 ) for parameter values k1 = 1.4, x0 = 1, k2 = 1.2, k3 =
0.5, k4 = 1.2, σ = 0.9 and p = 2. Using the EM method with step size �t = 0.001 and initial value
(x(0), y(0)) = (0.8, 2)

is globally asymptotically stable in �. Using the method mentioned in Ref. [18], we
give the simulation shown in Fig. 2 to sustain our results.

4 Continuous reaction conditions

Definition 4.1 System (1.5) is said to be persistence in the mean, if

lim inf
t→∞

1

t

t∫

0

y(r)dr > 0a.s.

Theorem 4.1 If

R̃0 = R0 − σ 2

2k4

(
k1x0

k

)2p

> 1, (4.1)

then for any initial value (x(0), y(0)) ∈ �∗, the solution (x(t), y(t)) of system (1.5)
has the following property:

lim inf
t→∞ 〈y(t)〉 ≥ ỹ. a.s. (4.2)

where

ỹ = −k2

k4

(
k4

pk3
+ σ 2

2pk3

(
k1x0

k

)p) 1
p

+ k1x0

k4
> 0. (4.3)
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Proof By the same way as the Proof of Theorem 3.1, we have

log y(t) − log y(0)

t
= pk3〈x p(t)〉 − k4 − σ 2

2
〈x2p(t)〉 + M1(t)

t
,

where 〈x(t)〉 is computed by (3.6), and the definition of M1(t) is similar to (3.10).
By the property of 〈x(t)〉, i.e.〈x p(t)〉 ≥ 〈x(t)〉p, we have the following inequality:

log y(t) − log y(0)

t
≥ pk3〈x(t)〉p − k4 − σ 2

2

(
k1x0

k

)2p

+ M1(t)

t

≥ pk3

[
k1x0

k2
− k4

k2
〈y(t)〉+ϕ(t)

]p

− k4− σ 2

2

(
k1x0

k

)2p

+ M1(t)

t
.

Note that 0 < x + y < k1x0
k , we have −∞ < logy(t) < log k1x0

k . Thus we get the
following inequality from the above formula:

log k1x0
k −log y(0)

t
≥ pk3

[
k1x0

k2
− k4

k2
〈y(t)〉+ϕ(t)

]p

−k4− σ 2

2

(
k1x0

k

)2p

+ M1(t)

t
.

(4.4)

Rearrange the inequality (4.4) we can get

〈y(t)〉 ≥ −k4

k2

{
1

pk3

[

k4 + σ 2

2

(
k1x0

k

)2p

+ log y(t) − log y(0)

t
+ M1(t)

t

]} 1
p

+k1x0

k4
+ k2

k4
ϕ(t). (4.5)

By (3.7) and (3.11), then taking the limit inferior of both sides (4.5) leads to

lim inf
t→∞ 〈y(t)〉 ≥ −k2

k4

[
k4

pk3
+ σ 2

2pk3

(
k1x0

k

)2p
] 1

p

+ k1x0

k4
:= ỹ.

Therefore, by the condition (4.1), we have the assertion (4.2) and (4.3). This complete
the proof of Theorem 4.1. �

Remark 4.1 Inducing Theorems 3.1 and 4.1, we can see when the noise is so small
that σ 2 <

pk3
2x̄ p the value of R01 := R0 − σ 2

2k4
x̄2p < 1 will lead to the reaction end,

and the value of R02 := R0 − σ 2

2k4

(
k1x0

k

)2p
> 1 will lead to the reaction proceeds.

Obviously R01 > R02.

Example 4.1 Assume that the parameter of system (1.5) are given by

k1 = 1.4, x0 = 1, k2 = 1.2, k3 = 0.5, k4 = 1.2, σ = 0.2, (4.6)
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Fig. 3 Computer simulation of the path x(t), y(t) for the SDE multi-molecule reaction model (1.5) and its
corresponding deterministic model (1.3) for parameter values k1 = 1.4, x0 = 1, k2 = 1.2, k3 = 0.5, k4 =
1.2, p = 2, σ = 0.2 and σ = 0.4 . Using the EM method with step size �t = 0.001 and initial value
(x(0), y(0)) = (0.8, 2)

Note that R0 − σ 2

2k4

(
k1x0

k

)2p .= 1.103 > 1 and σ 2 <
pk3
2x̄ p

.= 0.367.

Then by the Theorem 4.1, for any initial value (x(0), y(0)) = (0.8, 2) ∈ �∗, we
conclude that the solution (x(t), y(t)) of system (1.5) obeys

lim inf
t→∞ 〈y(t)〉 ≥ −k2

k4

(
k4

pk3
+ σ 2

2pk3

(
k1x0

k

)p) 1
p

+ k1x0

k4

.= 0.224 > 0, a.s.

That is to say, the reaction will proceed.
To further illustrate the effect of the noise intensity σ on model (1.5), we keep all

the parameter of (4.6) unchanged but increase σ to 0.4. Note that

R0 − σ 2

2k4

(
k1x0

k

)2p
.= 1.01048 > 1.

Using the method mentioned in Ref. [18], we give the simulations to support our
results in Fig. 3. Comparing the first picture and the second picture in Fig. 3, when the
noise getting smaller, the fluctuation of the solution of system (1.5) is getting weaker.
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5 Asymptotic behavior around the endemic proportion equilibrium P∗(x∗, y∗)

Theorem 5.1 If R0 > 1, then for any initial value (x(0), y(0)) ∈ �∗, the solution
(x(t), y(t)) of system (1.5) has the following property:

lim sup
t→∞

1

t

t∫

0

[

k2(x(r) − x∗)2 + k4

2
(y(r) − y∗)2

]

dr

≤
(

k1x0

k

)2p+1
{

(k2 + k4)
2x∗2

4k4(k2x∗ + k4 y∗)

[
k4

k3
+

(
k1x0

k

)p−1

y∗
]

+ k1x0

k

}

σ 2

a.s. (5.1)

Proof Since P∗(x∗, y∗) is the endemic equilibrium of system (1.5), we have

k1x0 = k2x∗ + pk3x∗p y∗, k4 = pk3x∗p.

Define a C2−function V : (0, k1x0
k ) × (0, k1x0

k ) −→ R+ by

V (x, y) = a

⎧
⎨

⎩

x∫

x∗

[

1 −
(

x∗

s

)p]

ds +
(

y − y∗ − y∗log
y

y∗

)
⎫
⎬

⎭

+1

2
(x − x∗ + y − y∗)2 := aV1 + V2

This function is nonnegative for all x, y > 0 because of the fact that u −1− log u ≥ 0
on u > 0. Let L be the generating operator of system (1.5), then we get

LV1 =
[

1 −
(

x∗
x

)p]

(k1x0 − k2x − pk3x p y) + σ 2

2
px∗P x p−1 y2

+
(

1 − y∗
y

)

(pk3x p y − k4 y) + σ 2

2
x2p y∗

= k1x0 − k2x − k1x0

(
x∗
x

)p
+ k2x

(
x∗
x

)p
+ pk3x∗p y − k4 y − pk3x p y∗ + k4 y∗

+σ 2

2
px∗px p−1 y2 + σ 2

2
x2p y∗

= k2x∗ − k2x + k2x

(
x∗
x

)p
− k2x∗

(
x∗
x

)p
+ k4 y∗ − k4 y∗

(
x∗
x

)p
+ k4 y∗

(
x∗
x

)p

+σ 2

2
px∗px p−1 y2 + σ 2

2
x2p y∗

= k2x∗(1 − u)

(

1 − 1

u p

)

+ k4 y∗(u p − 1)

(
1

u p − 1

)

+ σ 2

2
px∗px p−1 y2 + σ 2

2
x2p y∗

≤ − k2x∗
u p (u − 1)(u p − 1) − k4 y∗

u p (u p − 1)2 + σ 2

2
px∗px p−1 y2 + σ 2

2
x2p y∗.
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Here u = x
x∗ , If p ≥ 1, then

h(u) = (u − 1)(u p − 1) ≥ 0 f or all u > 0 (5.2)

and we can give a simple proof of the fact

|u p − 1| ≥ |u − 1|, p ≥ 1. (5.3)

It is obvious that if u ≥ 1, then u p − 1 ≥ 0, u − 1 ≥ 0 and we have u p − 1 ≥ u − 1; if
u < 1, then u p − 1 < 0, u − 1 < 0 and we have u p − 1 ≤ u − 1. Synthesize this two
points, we can conclude that (5.3) is true. Then from (2.3), (5.2) and (5.3), we obtain

LV1 ≤ −k2x∗ + k4 y∗
(

k1x0
k

)p |u − 1|2 + σ 2

2
px∗px p−1 y2 + σ 2

2
x2p y∗

≤−
(

k

k1x0

)p k2x∗+k4 y∗

x∗2 (x−x∗)2+ σ 2

2

(
k1x0

k

)p+1
[

k4

k3
+

(
k1x0

k

)p−1

y∗
]

,

and

LV2 = (x − x∗ + y − y∗)(k1x0 − k2x − k4 y) + σ 2x2p y2

≤−k2(x−x∗)2−(k2+k4)(x−x∗)(y−y∗) − k4(y−y∗)2+σ 2
(

k1x0

k

)2(p+1)

.

Then

LV = aLV1 + LV2

≤ −
[

a

(
k

k1x0

)p k2x∗+k4 y∗

x∗2 +k2

]

(x−x∗)2−(k2+k4)(x−x∗)(y−y∗)−k4(y−y∗)2

+a
σ 2

2

(
k1x0

k

)p+1
[

k4

k3
+

(
k1x0

k

)p−1

y∗
]

+ σ 2
(

k1x0

k

)2(p+1)

.

Using the Young’s inequality we have

LV ≤ −
[

a

(
k

k1x0

)p k2x∗ + k4 y∗

x∗2 + k2 − (k2 + k4)
2

2k4

]

(x − x∗)2 − k4

2
(y − y∗)2

+a
σ 2

2

(
k1x0

k

)p+1
[

k4

k3
+

(
k1x0

k

)p−1

y∗
]

+ σ 2
(

k1x0

k

)2(p+1)

.

Furthermore we choose a such that a( k
k1x0

)p k2x∗+k4 y∗
x∗2 − (k2+k4)

2

2k4
= 0, therefore

LV ≤−k2(x − x∗)2 − k4

2
(y − y∗)2

+
(

k1x0

k

)2p+1
{

(k2+k4)
2x∗2

4k4(k2x∗+k4 y∗)

[
k4

k3
+

(
k1x0

k

)p−1

y∗
]

+ k1x0

k

}

σ 2:=F(t).
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Fig. 4 Computer simulation of the path x(t), y(t) for the SDE multi-molecule reaction model (1.5) and its
corresponding deterministic model (1.3) for parameter values k1 = 1.4, x0 = 1, k2 = 1.2, k3 = 0.5, k4 =
1.2, p = 2 and differing values of σ = 0.05 and σ = 0.01. Using the EM method with step size �t = 0.001
and initial value (x(0), y(0)) = (0.8, 2)

So dV ≤ F(t)dt + σ(x∗p y − x p y∗)d B(t). Integrating both sides of it from 0 to t,
yields

V (t) − V (0) ≤
t∫

0

F(s)ds +
t∫

0

σ(x∗p y − x p y∗)d B(s). (5.4)

Let M2(t) := ∫ t
0 σ(x∗p y −x p y∗)d B(s). By the large number theorem for martingales

(see e.g. [16]), we obtain lim
t→∞

M2(t)
t = 0 a.s., which together with (5.4) implies

lim sup
t→∞

∫ t
0 F(s)ds

t
≥ 0 a.s.

Consequently we get formula (5.1). This complete the proof of Theorem 5.1. �


Remark 5.1 Theorem 5.1 shows that under some conditions, the distance between the
solution X (t) = (x(t), y(t)) of system (1.5) and the endemic proportion equilibrium
P∗ = (x∗, y∗) of syetem (1.3) has the following form

lim sup
t→∞

1

t

t∫

0

‖X (s) − P∗‖2 ≤ N‖σ‖2, a.s.
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where N is a positive constant. Although, the solution of system (1.5) does not have
stability as the corresponding deterministic system, we can still think there is approx-
imate stability, provided ‖σ‖2 is sufficiently small.

Example 5.1 Assume that the parameters of system (1.5) are given by

k1 = 1.4, x0 = 1, k2 = 1.2, k3 = 0.5, k4 = 1.2, σ = 0.05.

That is, we keep all the parameters the same as in Example 3.2 but let σ = 0.05. Note
that

R0 = pk3

k4

(
k1x0

k2

)p
.= 1.134 > 1,

then by Theorem 5.1, for any initial value (x(0), y(0) ∈ (0, k1x0
k ) × (0, k1x0

k ), we
draw a conclusion that the difference between the perturbed solution (x(t), y(t)) of
system (1.5) and P∗ = (x∗, y∗) is only related with white noise under the condition
R0 > 1. Using the method shown in [16], we give the simulation to support our result.
As expected, the solution is oscillating around the endemic equilibrium P∗ for a long
time (see Fig. 4). Besides, the parameters of the first two pictures in Fig. 4 are all same
but with different intensities of white noise. Especially, in the first σ = 0.05 and in the
second σ = 0.01. Obviously, we can observe when the white noise getting weaker,
the fluctuation around P∗ become smaller,which supports the result of Theorem 5.1.
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